The spin group $Spin(n,m)$ is the double cover of the group $SO(n,m)$ (the special orthogonal group). The latter is the group of special orthogonal group of signature $n,m$.
Spin Groups:
where $\mathfrak{su}(2)$ represents the algebra of rotation generators in three-dimensional space, and $(\pm i)\mathfrak{su}(2)$ corresponds to the algebra of boost generators (Lorentz boosts) which in physical terms relate to transformations altering an object's velocity without rotation. The coefficients $-i$ and $+i$ have to do with chirality...
The group $SO^+(1,3)$ contains six "basis" matrices:
Rotations:
$$ \Lambda_{yz}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & \cos\theta & -\sin\theta \\ 0 & 0 & \sin\theta & \cos\theta \\ \end{bmatrix} $$ $$ \Lambda_{zx}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & \cos\theta & 0 & \sin\theta \\ 0 & 0 & 1 & 0 \\ 0 & -\sin\theta & 0 & \cos\theta \\ \end{bmatrix} $$ $$ \Lambda_{xy}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} $$Boosts:
$$ \Lambda_{tx}(\phi) = \begin{bmatrix} \cosh\phi & -\sinh\phi & 0 & 0\\ -\sinh\phi & \cosh\phi & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ \end{bmatrix} $$ $$ \Lambda_{ty}(\phi) = \begin{bmatrix} \cosh\phi & 0 & -\sinh\phi & 0\\ 0 & 1 & 0 & 0\\ -\sinh\phi & 0 & \cosh\phi & 0\\ 0 & 0 & 0 & 1\\ \end{bmatrix} $$ $$ \Lambda_{tz}(\phi) = \begin{bmatrix} \cosh\phi & 0 & 0 & -\sinh\phi\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ -\sinh\phi & 0 & 0 & \cosh\phi\\ \end{bmatrix} $$They can be seen like associated to the following matrices (or their opposites) in $Spin(1,3)=SL(2,\mathbb C)$:
$$ \begin{bmatrix} \cos \frac{\theta}{2} & -i\sin \frac{\theta}{2} \\ -i\sin \frac{\theta}{2} & \cos \frac{\theta}{2} \\ \end{bmatrix} $$ $$ \begin{bmatrix} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \\ \end{bmatrix} $$ $$ \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \\ \end{bmatrix} $$ $$ \begin{bmatrix} \cosh \frac{\phi}{2} & -\sinh \frac{\phi}{2} \\ -\sinh \frac{\phi}{2} & \cosh \frac{\phi}{2} \\ \end{bmatrix} $$ $$ \begin{bmatrix} \cosh \frac{\phi}{2} & i\sinh \frac{\phi}{2} \\ -i\sinh \frac{\phi}{2} & \cosh \frac{\phi}{2} \\ \end{bmatrix} $$ $$ \begin{bmatrix} e^{-\phi/2} & 0 \\ 0 & e^{\phi/2} \\ \end{bmatrix} $$Related: Clifford algebras
________________________________________
________________________________________
________________________________________
Author of the notes: Antonio J. Pan-Collantes
INDEX: